Deloitte.

"Resilience by Design" The Los Angeles Earthquake Retrofit Law

Your speaker today:

Wayne H. Kalayjian, CE, SE, CFE

Senior Manager, Capital Projects Consulting

Deloitte Advisory

wkalayjian@deloitte.com

310.218.6530

BS Civil Engineering / Environmental Science – Tufts University

MS Structural and Earthquake Engineering – Stanford University

MS Business Management – Massachusetts Institute of Technology

Topics for today's discussion:

- Background Why this matters
- The Los Angeles Earthquake Retrofit Law
 - What buildings are affected by the new law?
 - What does the new law require?
 - What are its potential cost impacts?
- Technical concepts and issues
- Takeaways from today's presentation

Background – Why this matters

- California: the world's 8th largest economy (surpassing Italy, India, Russia):
 - 2014 GDP = \$2.3 Trillion
- Los Angeles: the world's 16th largest economy (surpassing Turkey, Saudi Arabia, Argentina, Netherlands)
 - 2014 GDP = \$870 Million
- Estimated effects of a Richter Magnitude 7.8 Earthquake in Los Angeles are approximately:
 - 1,800 fatalities
 - Estimated economic losses:
 - \$ 48 billion in property damage due to building shaking
 - \$ 65 billion in property damage due to fire
 - \$ 96 billion in business interruption costs
 - \$ 4 billion in losses due to traffic delays
 - \$ 213 billion

The New Law

What's it Intent?

- Seismic Vulnerability
- Protect human life
- Improve capacity to respond to earthquake events
- Quick recovery from earthquake events
- Protect the economy

Timeline of events:

- January 2014: LA Times article publishes results of UC Berkeley study of unsafe concrete buildings in Los Angeles
- December 2014: LA Mayor Garcetti issues "Resilience by Design" report
- October 2015: Garcetti signs Earthquake Retrofit Law

The Los Angeles Earthquake Retrofit Law:

What buildings and systems are affected by the new law?

- 1. Pre-1980 "soft-first-story" buildings
- 2. Pre-1980 "non-ductile reinforced concrete" buildings
- 3. Telecommunications infrastructure
 - Cellular Towers
 - Internet Maintenance
 - Data Centers
 - Earthquake Early Warning system
- 4. Water system infrastructure
 - Firefighting Water Supply
 - Aqueducts, dams, reservoirs, local systems
 - Water transit systems: Seismic Resilient Pipe Network

The Los Angeles Earthquake Retrofit Law:

What does the new law require?

Mandatory seismic retrofitting for:

- 1. Pre-1980 soft-story buildings (7-year horizon)
 - LA Department of Building and Saftey (LADBS) has identified 13,500 soft-story buildings
 - 2016-2017: Building owners have ONE year to determine retrofit status
 - 2017-2018: Owners have ONE additional year to acquire necessary retrofit permits
 - 2018-2022: Owners have an additional FIVE years to perform building retrofits

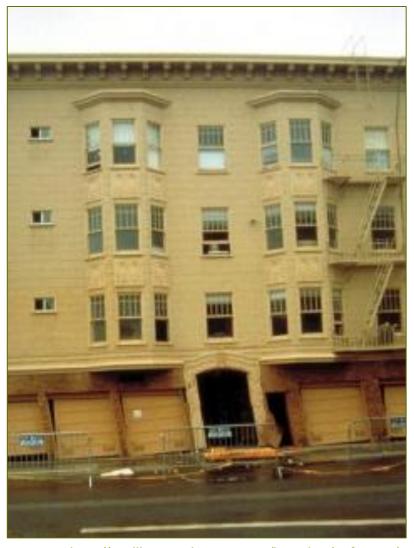
2. Pre-1980 non-ductile reinforced concrete buildings (25-year horizon)

- LADBS has identified 1,500 non-ductile reinforced concrete buildings
- 2016-2019: Building owners have THREE years to begin the assessment process
- 2019-2029: Owners have TEN additional years to determine retrofit status
- 2029-2041: Owners have an additional TWELVE years to perform building retrofits

The Los Angeles Earthquake Retrofit Law:

What are the potential cost impacts?

 If each building requires \$100,000 (assessment, design, permits, construction), then buildings alone would cost:


$$15,000 \times \$100,000 = \$1,500,000,000$$

- How might the Program be Financed?
 - Directly from building owners
 - Tenants
 - Rate Payers (water, sewer, power, telecommunications)
 - Statewide Seismic Resilience Bond Measure

Technical Concepts and Issues:

Soft-Story Buildings:

- Large openings on bottom floor(s)
- Abrupt changes in building rigidity
- Leads to localized floor collapse and pancaked collapse from floors above
- Often found in apartment buildings, mixed-use commercial blocks
- Dates to 1950s and 1960s
- Soft-stories are relatively easy to identify
- Phenomenon is understood and remedies are straightforward, relatively inexpensive, and non-disruptive

http://resilience.abag.ca.gov/housing/softstory/

Technical Concepts and Issues:

Non-Ductile Reinforced Concrete Buildings:

- Brittle nature leads does not absorb seismic shaking
- Lack of elasticity leads to catastrophic structural collapse
- Found in apartment buildings, office buildings, schools, hospitals, warehouses
- Dates to 1950s and 1960s
- Non-ductile R/C buildings are not easily detectable
- Phenomenon is complex and non-straight-forward
- Repairs are tailor-fit, expensive, time-consuming, disruptive

http://resilience.abag.ca.gov/commercial-building-

Technical Concepts and Issues:

Telecommunications Infrastructure:

- Cellular Towers
- Solar-powered Internet Maintenance
- Data Centers

Water System Infrastructure

- Firefighting Water Supply
- Aqueducts, dams, reservoirs, local systems
- Water transit systems: Seismic Resilient Pipe Network

Takeaways from Today's Presentation:

Strengthening Our Buildings

- Buildings require inspection and appraisal, whether they require retrofit repairs or not
- Estimated that 1.2 million buildings exist in Los Angeles

What's next?

- 1. Need for increased inspection and appraisal services
- 2. Engineers and cost estimators are needed to perform many inspections
- 3. Engineers and estimators view 'valuation' in a different way than appraisers
- 4. Resilience program will be document-intensive and require robust management of repair progress, budgets, costs, and completion

Deloitte.

"Resilience by Design" and the Los Angeles Earthquake Retrofit Law

Questions?

Wayne H. Kalayjian, CE, SE, CFE
Senior Manager, Capital Projects Consulting
Deloitte Advisory

wkalayjian@deloitte.com

310.218.6530